

Synthesis and Enzymatic Digestion of an RNA Nonamer in Both Enantiomeric Forms

Elisabeth Moyroud, Ewa Biala and Peter Strazewski*

Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland

Received 14 December 1999; accepted 11 January 2000

Abstract—The d- and l-RNA nonamers of the sequence r(GCUUCGGC)T have been synthesised for X-ray crystallographic purposes. In vitro digestion of the unnatural optical antipode by snake venom phosphodiesterase I takes place at an approximately 1800-fold slower rate than that of the natural d-nonamer. The digestion experiments showed—to our knowledge for the first time—that l-RNA can indeed be cleaved enzymatically when phosphodiesterase I from snake venom is used—as opposed to a number of cellular ribonucleases—which sheds an interesting light on the evolution and possibly structure/function relationship of venom versus cellular degradation enzymes. The broad substrate specificity of this enzyme could be taken advantage of to study and further optimise the resistance towards biodegradation of therapeutic l-RNA aptamers. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

RNA crystal structure solving gained much interest in the recent decade, but it remains impossible to predict whether a particular RNA sequence will crystallise orderly or not. One parameter that is influenced by crystal packing forces is the solid state molecular volume ($=V_{unit cell}/Z$). According to Wallach's rule,¹ racemic crystals of compounds in the low molecular weight regime ('small' molecules) may be more stable and on average somewhat more densely packed than their chiral counterparts.² Crystal packing of larger molecules such as oligonucleotides or proteins, which crystallise with great numbers of disordered water molecules, may not be driven by the same effects as small molecules. There is, to our knowledge, only one example in the literature where a middle-sized oligonucleotide was crystallised in both chiral and racemic forms, the naturally configured and the racemic crystal structures of the hexadeoxyribonucleotide d(CGCGCG). The solid state molecular volume of the duplex $d(CGCGCG)_2$ is 20% larger in the racemic³ than in the chiral⁴ crystal (7.54 versus 6.27 nm^3 per duplex) revealing a possible lack of relevance of Wallach's rule to highly solvated molecules. While 20% seems to be a significant difference, it could nevertheless be a fortuitous result, since the molecular volume may strongly depend on the quality of the solvent-rich crystal(s) actually measured. To obtain more information about the chiral-versus-racemicdifference in molecular volumes of middle-sized oligonucleotides is one reason for the present study.

Having successfully crystallised RNA in well diffracting single crystals, the next problem is to solve the possibly unprecedented diffraction data. The phases are usually solved by either molecular replacement (using similar model structures already solved) or by isomorphous replacement methods (using heavy atom derivatives). Both methods meet severe limitations in the case of middle-sized biomolecular (especially RNA) crystal data.⁵⁻⁷ However, racemic compounds usually crystallise—provided that no conglomerates are formed—in centro-symmetric unit cells, a fact that largely delivers crystallo-graphers from the phase problem.

The naturally configured d-nonamer r(GCUUCGGC)T has already been studied. Its crystallisation occurs in the presence of $Rh(NH_3)_6Cl_3$ and the molecular structure has been elucidated to 1.6 Å resolution.⁸ Taking advantage of the knowledge of the crystallisation conditions and of the high quality of this crystal, we synthesised both enantiomers, the d- and the 1-nonamers r(GCUUCGGC)T, and wish to crystallise d- and 1-forms together using established crystallisation procedures, in order to solve the crystal structure of the racemate.

Here we report the synthesis of the 1-monomers and the oligomers in both d and 1 forms, and we describe their characterisation by HPLC, MALDI-ToF MS and circular dichroism, as well as the digestion of both oligomers with snake venom phosphodiesterase I and alkaline phosphatase.

For the synthesis of the d-nonamer we used the new commercially available and high-yielding $TOM^{\textcircled{B}}(2'-O-triisopropylsilyloxymethyl)$ phosphoramidites from Xeragon,

Keywords: oligoribonucleotide; 1-RNA; phase problem; phosphodiesterase I; snake venom.

^{*} Corresponding author. Tel.: +4161-267-1169; fax: +4161-267-1105; e-mail: strazi@ubaclu.unibas.ch

^{0040–4020/00/\$ -} see front matter 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(00)00046-6

Scheme 1. Reaction conditions and isolated yields: (a) (CH₃O)₂CHN(*n*Bu)₂, MeOH: (**2b**: 91%) (**2c**: 77%); (b) DMTCl, DMAP, pyr: (**3a**: 80%) (**3b**: 70%) (**3c**: 60%); (c) TBDMSCl, imidazole, pyr: (**4a**: 46%) (**4b**: 40%) (**4c**: 35%); (d) ClP(N*i*Pr₂)(OCH₂CH₂CN), 2,4,6-collidine, *N*-methylimidazole, THF: (**5a**: 88%) (**5b**: 73%) (**5c**: 91%).

Switzerland (purchased from Glen Research). The l-ribonucleoside phosphoramidites 5(a-c) were prepared from the corresponding l-ribonucleosides 1(a-c) previously synthesised from readily available l-xylose.⁹ l-Thymidine derivative 15 was also synthesised to serve as the anchoring nucleoside for the RNA synthesis on solid support.

Results and Discussion

Synthesis of 1-ribonucleoside phosphoramidites

We derivatised the 1-ribonucleosides $1(\mathbf{a}-\mathbf{c})$ to the phosphoramidites $5(\mathbf{a}-\mathbf{c})$ according to a standard protocol (Scheme 1): (i) base amino protection, (ii) 5'-O-dimethoxy-tritylation, (iii) 2'-O-silylation, and (iv) 3'-O-phosphitylation. The *N*,*N*-di-*n*-butyl formamidine protecting group^{10,11} was chosen because of the facile synthetic method, a simple one-flask procedure without any need of

transiently protecting the hydroxyl groups. This amidine function is fully compatible with our oligoribonucleotide synthetic and deblocking protocol.

Synthesis of the 1-thymidine anchoring derivative

We elaborated the synthetic route on the D-series (not shown) and applied it to the l-anchoring derivative **15** (Scheme 2). Proceeding from 1-O-acetyl-2,3,5-tri-O-benzoyl- β -l-ribofuranose (**6**),⁹ nucleoside derivative **7** was obtained in 98% yield through the well-established procedure reported by Vorbrüggen.^{12,13} After two deprotection/reprotection steps (f, g), a slightly modified radical 2'-O-deoxygenation procedure according to Robins et al.¹⁴ was applied on **9** (h, i) to furnish compound **11** in high yield. Further manipulations at the l-deoxyribose hydroxyl groups (j, k) afforded 5'-O-dimethoxytrityl derivative **13**. After coupling with succinic anhydride (l), compound **14** was

Scheme 2. Reaction conditions and isolated yields: (e) thymine, $CH_3C(=NHTMS)OTMS$; TMSOTf, CH_3CN , $65^{\circ}C$: 98%; (f) NaOMe/MeOH: 97%; (g) (*i*Pr₂SiCl)₂O, DMAP, pyr: 82%; (h) PhOC(S)Cl, DMAP, CH₃CN: 88%; (i) AIBN, Bu₃SnH, tol, 80–90°C: 82%; (j) Bu₄NF, THF: 75%; (k) DMTCl, DMAP, pyr: 81%; (l) succinic anhydride, Et₃N, DMAP, (CH₂Cl)₂: 87%; (m) hexamethylene diisocyanate/DMAP; H₂NCH₂–polystyrene (50% DVB), EtN(*i*Pr)₂, CH₂Cl₂.

Figure 1. CD spectra of the d- and 1-nonamers in aqueous buffer. Conditions: 50 μ l nonamer stock solution (6 OD₂₆₀ L; 4 OD₂₆₀ D)+450 μ l 100 mM NaCl, 10 mM Na_XH_YPO₄, pH 7.0.

loaded onto the solid support (aminomethyl polystyrene crosslinked with 50% divinyl benzene) as described by Kumar et al. (m).¹⁵ A loading of 14 μ mol **14**/g resin was obtained for the 1-thymidine anchoring derivative and 17 μ mol/g resin for the d-thymidine anchoring derivative.

Synthesis of d- and 1-oligoribonucleotides

The two oligomers were synthesised on an ABI 392 DNA/ RNA synthesiser using a modified 1 μ mol RNA cycle, 0.25 M 5-(benzylthio)tetrazole/CH₃CN, 10 equiv. of each 1-ribonucleoside phosphoramidite and a coupling time of 600 s for the 1-oligomer, 17 equiv. and 300 s for the d-oligomer, respectively. After deblocking with 40% aq. CH₃NH₂ (or 33% ethanolic CH₃NH₂) and Et₃N·3HF, the oligoribonucleotides were precipitated from *n*-butanol at -20° C and purified by strong anion exchange HPLC, followed by desalting over C_{18} reversed-phase using a step gradient from H₂O to 30% aq. CH₃CN. The two HPLC-pure enantiomeric RNA nonamers were analysed by MALDI ToF mass spectroscopy and showed the expected molecular signals (HPLC and mass spectra in Experimental).

Circular dichroism (CD) spectroscopy of the two RNA nonamers resulted in spectra that were mirror images of each other giving physical evidence that the 1-RNA nonamer was indeed the optical antipode of the corresponding d-RNA nonamer (Fig. 1).

Digestion experiments

Both nonamers were submitted to an enzymatic digestion with snake venom phosphodiesterase I—a 5'-exonuclease that cleaves RNA and DNA strands from their 3'-terminus

Figure 2. RP-HPLC analysis of the enzymatic digestion. (a) d-nonamer after 10 min at 37°C; area percent at 270 nm: 32.8% (13 min: 3×C), 20.3% (14.5 min: 2×U), 35.9% (20 min: 3×G), 11.3% (24 min: T). (b) 1-nonamer after 20 min at 37°C. Digestion buffer: 12.5 mM Tris–OAc/12.5 mM Mg(OAc)₂, pH 8.8+3 milliunits snake venom phosphodiesterase I (5 units per mg, Merck) per pmol of RNA (ϵ_{260} (9mer)=71200 M⁻¹cm⁻¹)+alkaline phosphatase (Sigma). HPLC conditions: Eurospher[®] 100/5 C₁₈ (Macherey–Nagel), 250×8 mm; A=0.1 M NH₄OAc, B=CH₃CN/ A 3:7; 0–20% B within 20 min; 2 ml/ min; 270 nm. Intermediate nucleoside 5'-monophosphates (NMP) elute after approximately 5 min.

Figure 3. Time course of the digestion of the 1-nonamer. Time course of the digestion of the 1-nonamer at 37°C as analysed by RP-HPLC (conditions described in the legend of Fig. 2). Bold lines: degradation of 1-oligomers; thin lines: built-up of 1-nucleosides as observed at 270 nm (labels: identity and retention time of the HPLC signals). Time points taken after 20 min, 3 h, 16 h, 22 h, 40 h, 88 h, 124.5 h, 185 h, 305 h, and 477 h. The graphical insert shows the course during the first 3 h: rapid degradation of the 1–9mer (dashed line: no degradation in the absence of enzymes), concomitant built-up of the 1–8mer GCUUCGGC (maximum accumulation after 3 h) and 1-thymidine (1 equiv. at 3 h), slower (but still relatively rapid) built-up of the 1–7mer GCUUCGG, 1-C and 1-G and 1-G mer and the appearance of 2 equiv. of 1-C and 1-G each; 16–40 h: second accumulation of the 1–7mer and almost full appearance to f1-U, followed by a slow degradation of the 1–7mer, the bearly visible intermediate accumulation of the 1–6mer and the appearance the third equivalents of 1-C and 1-G.

releasing nucleoside 5'-monophosphates—and alkaline phosphatase (for complete dephosphorylation). As expected, the d-nonamer was completely degraded within 10 min at 37°C using 3 milliunits of phosphodiesterase I per pmol of nonamer. The d-ribonucleoside composition was in agreement with the primary sequence (Fig. 2a).

The assumed stereospecificity of the enzyme was expected to protect 1-nucleic acids from nucleolytic cleavage, as shown by others that used whole cell extracts from mouse fibroblasts or RNase A, ¹⁶ a 3'-pyrimidine-specific endoribo-nuclease, nuclease P_1 , ¹⁷ a 5'-nucleotidehydrolase, or human serum. ^{18,19} However, under identical conditions as for the d-nonamer (same enzyme/RNA ratio), the treatment of the 1-nonamer showed the appearance of the octamer GCUUCGGC after only 20 min (Fig. 2b). After 3 h at 37°C, all 1-thymidine was cleaved by the enzyme and other nucleosides (1-guanosine and 1-cytidine) began to appear on the chromatogram. The time dependence of the digestion was followed by RP-HPLC until virtually complete (Fig. 3). Without enzymes but under otherwise identical conditions the 1-nonamer was absolutely stable for at least 3 h. small amounts of the 1-octamer GCUUCGGC began to appear after 6 h and steadily accumulated during the following 118.5 h (dashed lines in Fig. 3). No further degradation of the 1-octamer was observed until enzyme was added after 124.5 h of incubation, when enzymatic digestion set in (not shown).

In conclusion, we synthesised an l-RNA nonamer utilising a useful nucleobase protecting group and an attractive workup

protocol for the oligoribonucleotide. The digestion experiments showed—to our knowledge for the first time—that I-RNA can indeed be cleaved enzymatically when phosphodiesterase I from snake venom is used—as opposed to a number of cellular ribonucleases-which sheds an interesting light on the evolution and possibly structure/ function relationship of venom versus cellular degradation enzymes. The rate of digestion of the l-RNA was at least some 1800-fold slower than that of the naturally configured d-RNA (\geq 300 h versus \leq 10 min). In addition, the time course of the cleavage showed that (see also graphical abstract): (i) the thermally labile unpaired 3'-terminal 1-deoxyribonucleoside was digested relatively fast (87% 1-thymidine in 20 min), (ii) the rate of cleavage slowed down for the part involved in base pairing^{20,21} (GCUUCGGC), and (iii) the cleavage of the 5'-terminal GC dinucleotide was the slowest (between approximately 50 and 500 h), which probably reflects uncatalysed RNA degradation owing to a continuing deactivation of the enzyme upon prolonged incubation at 37°.

Experimental

Abbreviations

AIBN, 2,2'-azobis[isobutyronitrile]; B, nucleobase fragment; BSA, N,O-*bis*-(trimethylsilyl)acetamide; DMAP, 4-dimethylaminopyridine; DMF, dimethylformamide; DMTCl, 4,4'-O-dimethoxyphenyl(phenyl)methyl chloride (= 4,4'-dimethoxytrityl chloride); hex: *n*-hexane; HMDIC, hexamethylene diisocyanate; M, molecular ion; R_f , retention factor on silica tlc plates; PE, petrol ether; pyr, pyridine; TBDMSCl, *tert*-butyldimethylsilyl chloride; TBME, *tert*-butylmethyl ether; TCA, trichloroacetic acid; TEA, triethylamine; THF, tetrahydrofuran; TMSOTf, trimethylsilyl trifluoromethanesulfonate.

General

¹H NMR spectra were measured at 300 MHz on a VARIAN Gemini 300 spectrometer using tetramethylsilane (δ =0.0) as an internal standard. ¹³C NMR spectra were obtained at 75 MHz using the signal from the solvents as internal standard (CDCl₃ (δ =77.0), CD₃OD (δ =49.0)) and ³¹P NMR spectra using POPh₃ (as external standard ($\delta = -18.0$)). Mass spectra were obtained on a MAT 312 mass spectrometer using the Fast Atomic Bombardment (FAB) ionization method and positive ion detection (solvent: *p*-nitrobenzyl alcohol), or on a Perceptive Biosystems Vestec MALDI ToF mass spectrometer using 2,6-dihydrobenzophenone as the matrix (N_2 laser; neg. ion detection; 25 scans per spectrum). $[\alpha]$ values were obtained on a Perkin– Elmer 141 polarimeter. Melting points were determined by visual observation on a Kofler block and are corrected. TLC was performed on a pre-coated silica gel F₂₅₄ plates with fluorescent indicator. Glycosides and nucleosides were visualised on tlc plates by subsequent spraying with naphtoresorcin and H₂SO₄ solutions in ethanol, respectively, followed by heating. Column chromatography was performed with flash silica gel (35–70 µm) from Uetikon; for the silvlated compounds 4(a-c): Silicagel H nach Stahl (Typ 60) from Merck; for the phosphoramidites 5(a-c): Lichroprep Li 60 (40-64 µm) from Merck. Dry pyridine was obtained by distillation over CaH2. All other solvents were used as purchased.

Synthesis of 1-ribonucleoside phosphoramidites

6-N-((di-n-Butylamino)-methylene)-1-cytidine (2b). 1-Cytidine (1b) (74 mg, 0.30 mmol) was coevaporated three times in abs. pyr, then suspended in anhydrous methanol (0.7 ml). N,N-di-n-butylformamide dimethylacetal (105 mg, 0.52) mmol) was added and the mixture was stirred overnight at room temperature. After evaporation to dryness, purification by chromatography (CH₂Cl₂/MeOH 87:13) furnished **2b** (104 mg, 0.27 mmol, 91%) as a yellow solid. $R_{\rm f}$ (CH₂Cl₂/ MeOH 85:15): 0.58. ¹H NMR (CDCl₃): 0.91–0.98 (m, 6H, CH₃); 1.26-1.40 (m, 4H, CH₃CH₂); 1.54-1.65 (m, 4H, CH₃CH₂CH₂); 3.32-3.55 (2m, 4H, NCH₂); 3.81 (dd, 1H, ${}^{2}J_{5'a,5'b}=11.0$ Hz, ${}^{3}J_{5'a,4'}=3.2$ Hz, HaC(5')); 3.94 (dd, 1H, ${}^{2}J_{5'b,5'a}=12.0$ Hz, ${}^{3}J_{5'b,4'}=4.4$ Hz, HbC(5')); 4.22–4.25 (m, 1H, HC(4')); 4.31 (t, 1H, ${}^{3}J=4.5$ Hz, HC(3')); 4.39 (t, 1H, ${}^{3}J$ =4.9 Hz, HC(2')); 5.69 (d, 1H, ${}^{3}J$ =4.5 Hz, HC(1')); 6.07 $(d, 1H, {}^{3}J=7.2 \text{ Hz}, \text{HC}(5)); 7.86 (d, 1H, {}^{3}J=7.2 \text{ Hz}, \text{HC}(6));$ 8.75 (s, 1H, NCH). ¹³C NMR (CDCl₃): 13.67, 13.76 (CH₃); 19.75, 20.06 (CH₃CH₂); 29.07, 30.93 (CH₃CH₂CH₂); 45.60, 52.29 (NCH₂); 62.03 (C(5')); 70.82 (C(3')); 75.28 (C(2')); 86.08 (C(4')); 94.11 (C(1')); 103.34 (C(5)); 142.45 (C(6)); 157.42 (C(2)); 158.38 (NCH); 172.20 (C(4)). MS (FAB): 421 $([M+K]^+, 22.0\%); 383 ([M+H]^+, 51.2\%); 251 (100\%).$

2-*N***-((di**-*n*-**Butylamino)-methylene)-l-guanosine** (2c). l-Guanosine (1c) (295 mg, 1.04 mmol) was treated as described above. Purification by chromatography (CH₂Cl₂/ MeOH gradient from 90:10 to 85:15) gave 2c (436 mg, 0.80 mmol, 77%) as a pale yellowish foam. $R_{\rm f}$ (CH₂Cl₂/ MeOH 85:15): 0.45. ¹H NMR (CD₃OD): 0.94–1.01 (m, 6H, CH₃); 1.31–1.43 (m, 4H, CH₃CH₂); 1.60–1.70 (m, 4H, CH₃CH₂CH₂); 3.40-3.60 (2m, 4H, NCH₂); 3.74 (dd, 1H, ${}^{2}J_{5'b,5'a}$ =12.2 Hz, ${}^{3}J_{5'a,4'}$ =3.3 Hz, HaC(5')); 3.84 (dd, 1H, ${}^{2}J_{5'b,5'a}$ =12.1 Hz, ${}^{3}J_{5'b,4'}$ =3.0 Hz, HbC(5')); 4.09–4.12 (m, 1H, HC(4')); 4.32 (dd, 1H, ${}^{3}J=5.1$, 3.5 Hz, HC(3')); 4.66 (t, 1H, ${}^{3}J=5.6$ Hz, HC(2')); 5.94 (d, 1H, ${}^{3}J=5.9$ Hz, HC(1')); 8.06 (s, 1H, HC(8)); 8.65 (s, 1H, NCH). ¹³C NMR (CD₃OD): 14.05, 14.19 (CH₃); 20.76, 21.17 (CH₃CH₂); 30.17, 32.04 (CH₃CH₂CH₂); 46.70, 53.19 (NCH₂); 63.05 (C(5')); 72.24 (C(3')); 75.68 (C(2')); 87.26 (C(4')); 90.06 (C(1')); 121.06 (C(5)); 139.39 (C(8)); 151.91 (C(4));159.35, 160.17 (C(6)) or (C(2)); 159.62 (NCH). MS (FAB): 461 ($[M+K]^+$, 63.4%); 423 ($[M+H]^+$, 78.8%); 291 ($[B^{N=CH(n-Bu)_2}+H_2]^+$, 100%).

5'-O-(4,4'-Dimethoxytrityl)-l-uridine (3a). l-Uridine (1a) (595 mg, 2.44 mmol) was coevaporated three times with abs. pyr, then pyr (10 ml) was added under an Ar atmosphere. DMAP (59 mg, 0.49 mmol) and DMTCl (908 mg, 2.68 mmol) were coevaporated two times with abs. pyr, then dissolved in pyr (10 ml) then added to the solution. The mixture was stirred overnight at room temperature. Methanol (2 ml) was added and stirred for 30 min. CH₂Cl₂ (200 ml) was added and washed with sat. NaHCO₃ solution (50 ml). After drying over Na₂SO₄ and evaporation, purification by chromatography (EtOAc/ MeOH gradient from 100:0 to 90:10, 1% v/v Et₃N) afforded **3a** (1.07 g, 1.95 mmol, 80%) as a white foam. $R_{\rm f}$ (MeOH/ EtOAc 1:9): 0.70. ¹H NMR (CDCl₃): 3.48 (dd, 1H, ${}^{2}J_{5'a,5'b}=11.0$ Hz, ${}^{2}J_{5'a,4'}=2.5$ Hz, HaC(5')); 3.53 (dd, 1H, ${}^{2}J_{5'b,5'a}=11.0$ Hz, ${}^{3}J_{5'b,4'}=1.9$ Hz, HbC(5')); 3.78 (s, 6H, CH₃O); 4.20 (m, 1H, HC(4')); 4.33 (dd, 1H, ${}^{3}J=5.0$, 2.7 Hz, HC(2')); 4.42 (d, 1H, ${}^{3}J=5.7$ Hz, HC(3')); 5.37 (d, 1H, ${}^{3}J=8.1$ Hz, HC(5)); 5.89 (d, 1H, ${}^{3}J=2.7$ Hz, HC(1')); 6.82-7.40 (m, 13H, Ph); 8.00 (d, 1H, ³J=8.2 Hz, HC(6)). ¹³C NMR (CDCl₃): 55.25 (CH₃O); 61.96 (C(5')); 69.92 (C(3')); 75.62 (C(2')); 84.00 (C(4')); 87.08 (C-Ph(Ph- OCH_{3}_{2} ; 90.80 (C(1')); 102.22 (C(5)); 113.33-136.05, 144.35, 149.70, 158.72 (Ph); 140.34 (C(6)); 151.09 (C(2)); 163.60 (C(4)). MS (FAB): 585 ($[M+K]^+$, 1.5%); 547 ([M+H]⁺, 1.3%) 303 ([C-Ph(Ph-OCH₃)₂]⁺, 24.9%); 242 (100%).

6-N-((di-n-Butylamino)-methylene)-5'-O-(4,4'-dimethoxytrityl)-l-cytidine (3b). Compound 2b (90 mg, 0.23 mmol) was treated as described above. Purification by chromatography (CH₂Cl₂/MeOH 98:2, 1% v/v pyr) afforded 3b (109 mg, 0.16 mmol, 70%) as a white foam. $R_{\rm f}$ (CH₂Cl₂/ MeOH 90:10): 0.64. ¹H NMR (CDCl₃): 0.92–0.96 (m, 6H, CH₃); 1.26–1.40 (m, 4H, CH₃CH₂); 1.54–1.64 (m, 4H, CH₃CH₂CH₂); 3.32–3.55 (2m, 6H, CH₂N, H₂C(5')); 3.77 (s, 6H, CH₃O); 4.30–4.33 (m, 3H, HC(2'), HC(3'), HC(4')); 5.91 (d, 2H, HC(1'), HC(5)); 6.80-7.39 (m, 13H, Ph); 7.97 (d, 1H, ³*J*=7.2 Hz, HC(6)); 8.61 (br s, 1H, NH); 8.83 (s, 1H, NCH). ¹³C NMR (CDCl₃): 13.60, 13.68 (CH₃); 19.68, 19.97 (CH₃CH₂); 28.99, 30.87 (CH₃CH₂CH₂); 45.41, 52.09 (NCH₂); 55.10 (CH₃O); 62.76 (C(5')); 71.44 (C(3')); 76.80 (C(2')); 85.09 (C(4')); 86.64 (*C*-Ph(PhOCH₃)₂); 92.44 (C(1')); 113.12–140.91, 149.64, 158.25 (Ph); 144.25 (C(6)); 157.66 (C(2)); 158.46 (NCH); 172.08 (C(4)). MS (FAB): 723 ([M+K]⁺, 7.5%); 685 ([M+H]⁺, 9.9%); 303 ([C-Ph(PhOCH₃)₂]⁺, 100%).

2-N-((di-n-Butylamino)-methylene)-5'-O-(4,4'-dimethoxytrityl)-l-guanosine (3c). Compound 2c (406 mg, 0.75 mmol) was treated as described above. Purification by chromatography (CH₂Cl₂/MeOH gradient 98:2 to 95:5, 0.1% v/v pyr) gave 3c (325 mg, 0.45 mmol, 60%) as a white foam. $R_{\rm f}$ (CH₂Cl₂/MeOH 94:6): 0.38. ¹H NMR (CDCl₃): 0.92–0.99 (m, 6H, CH₃); 1.26–1.40 (m, 4H, CH₃CH₂); 1.55–1.68 (m, 4H, CH₃CH₂CH₂); 3.30-3.73 (m, 6H, CH₂N, H₂C(5')); 3.75 (s, 6H, CH₃O); 4.28–4.30 (m, 1H, HC(4¹)); 4.39–4.41 (m, 1H, HC(2')); 4.64 (d, 1H, ${}^{3}J=5.2$ Hz, HC(3')); 5.97 (d, 1H, ${}^{3}J=5.8$ Hz, HC(1')); 6.76–7.39 (m, 13H, Ph); 7.52 (s, 1H, HC(8)); 8.43 (s, 1H, NH); 8.54 (s, 1H, NCH). ¹³C NMR (CDCl₃): 13.67, 13.78 (CH₃); 19.73, 20.15 (CH₃CH₂); 28.95, 30.92 (CH₃CH₂CH₂); 45.77, 52.43 (CH₂N); 55.17 (CH₃O); 64.03 (C(5')); 71.66 (C(3')); 74.80 (C(2')); 84.15 (C(4')); 86.40 (C-Ph(Ph-OCH₃)₂); 87.70 (C(1')); 119.44 (C(5)); 113.16, 126.79–136.46, 158.02 (Ph); 144.69 (C(8)); 150.63 (C(4)); 156.84, 157.70 (C(6) or C(2)); 158.49 (NCH). MS (FAB): 763 ($[M+K]^+$, 13.8%); 725 ([M+H]⁺, 13.1%); 303 ([C-Ph(Ph-OCH₃)₂]⁺, 100%).

2'/3'-O-tert-Butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-l-uridine (4a/a'). Compound 3a (169 mg, 0.31 mmol) and imidazole (84 mg, 1.24 mmol) were coevaporated three times with anhydrous pyr under Ar. Abs. pyr (1.6 ml) followed by TBDMSCl (51 mg, 0.34 mmol) were added. The mixture was stirred overnight at room temperature. After evaporation to dryness, CH₂Cl₂ (100 ml) was added washed by sat. NaHCO₃ solution (15 ml). After drying over Na₂SO₄ and evaporation, purification by chromatography (toluene/EtOAc gradient from 95:5 to 50:50 (85:15 to 82:18 for 4a, 70:30 to 50:50 for 4a')) afforded 4a (94 mg, 0.14 mmol, 46%) and 4a' (88 mg, 0.12 mmol, 43%) as a white foam. $R_{\rm f}$ (CHCl₃/EtOAc 6:4): 0.64 (4a) 0.44 (4a'). ¹H NMR (CDCl₃) (**4a**): 0.16 (s, 3H, CH₃); 0.19 (s, 3H, CH₃); 0.93 (s, 9H, tBu); 2.58 (br s, 1H, HOC(3')); 3.46-3.55 (m, 2H, H₂C(5')); 3.79 (s, 6H, CH₃O); 4.10-4.12 (m, 1H, HC(4')); 4.33-4.36 (m, 2H, HC(2'), HC(3')); 5.29 (d, 1H, ${}^{3}J=8.2$ Hz, HC(5)); 5.95 (d, 1H, ${}^{3}J=3.0$ Hz, HC(1')); 6.81–7.40 (2m, 13H, Ph); 7.95 (d, 1H, ³J=8.1 Hz, HC(6)); 9.14 (br s, 1H, NH). ¹³C NMR (CDCl₃) (4a): -5.19, -4.65 $((CH_3)_2Si);$ 18.02 $(C(CH_3)_3);$ 25.67 $(C(CH_3)_3);$ 55.25 (CH₃O); 62.32 (C(5')); 70.46 (C(3')); 76.34 (C(2')); 83.56 (C(4')); 87.21 ((C-Ph(Ph-OCH₃)₂); 88.71 (C(1')); 102.28 (C(5)); 113.32–135.17, 158.72, 158.75 (Ph); 140.25 (C(6)); 150.22 (C(2)); 163.18 (C(4)). ¹H NMR (CDCl₃) (4a'): -0.03 (s, 3H, CH₃); 0.07 (s, 3H, CH₃); 0.0.85 (s, 9H, *t*Bu); 3.34-3.56 (m, 2H, H₂C(5')); 3.79 (s, 6H, CH₃O); 4.07-4.09 (m, 1H, HC(4')); 4.17-4.20 (m, 2H, HC(2')); 4.40 (t, 1H, ${}^{3}J=5.4$ Hz, HC(3')); 5.40 (d, 1H, ${}^{3}J=6.3$ Hz, HC(5)); 5.98 (d, 1H, ${}^{3}J$ =3.0 Hz, HC(1')); 6.83–7.41 (2m, 13H, Ph); 7.88 (d, 1H, ${}^{3}J$ =6.0 Hz, HC(6)). ${}^{13}C$ NMR (CDCl₃) (4a'): -4.93, -4.89 ((CH₃)₂Si); 17.89 (C(CH₃)₃); 25.58 (C(CH₃)₃); 55.12 (CH₃O); 61.65 (C(5')); 71.10 (C(3')); 75.09 (C(2')); 83.66 (C(4')); 86.98 ((C-Ph(Ph-OCH₃)₂); 89.54 (C(1')); 102.39 (C(5)); 113.17–135.06, 143.96, 158.86 (Ph); 140.11 (C(6)); 150.55 (C(2)); 163.33 (C(4)). MS (FAB): 699 $([M+K]^+, 5.3\%)$; 661 $([M+H]^+, 5.3\%)$; 601 $([M+H]^+, 5.3\%)$; 6 1.7%); 303 ([C-Ph(Ph-OCH₃)₂]⁺, 100%).

6-N-((di-*n*-Butylamino)-methylene)-2¹/3¹-O-tert-butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-l-cytidine (4b/b'). Compound **3b** (92 mg, 0.14 mmol) was treated as described above. Purification by chromatography (toluene/EtOAc gradient from 95:5 to 30:70 (80:20 to 75:25 4b, 40:60 to 30:70 **4b**')) afforded **4b** (43 mg, 0.055 mmol, 40%) and **4b**' (40 mg, 0.05 mmol, 37%) as a pale yellowish foam. $R_{\rm f}$ (CHCl₃/EtOAc 6:4): 0.65 (**4b**), 0.32 (**4b**'). ¹H NMR (CDCl₃) (4b): 0.19 (s, 3H, CH₃); 0.32 (s, 3H, CH₃); 0.90-0.99 (m, 15H, *t*Bu, CH₃CH₂); 1.26–1.38 (m, 4H, CH₃CH₂); 1.51–1.64 (m, 4H, CH₃CH₂CH₂); 2.44 (d, 1H, ${}^{3}J=8.7$ Hz, HOC(3')); 3.29-3.58 (2m, 6H, CH₂N, H₂C(5')); 3.80 (s, 6H, CH₃O); 4.05–4.09 (m, 1H, HC(4')); 4.28–4.32 (m, 2H, HC(2'), HC(3'); 5.74 (d, 1H, ³J=7.2 Hz, HC(5)); 5.94 (d, 1H, ${}^{3}J=1.2$ Hz, HC(1')); 6.73–7.45 (m, 13H, Ph); 8.07 (d, 1H, ${}^{3}J=7.2$ Hz, HC(6)); 8.86 (s, 1H, NCH). ${}^{13}C$ NMR (CDCl₃) (**4b**): -5.50, -4.39 ((CH₃)₂Si); 13.65, 13.74 (CH₃); 18.07 (C(CH₃)₃); 19.76, 20.04 (CH₃CH₂); 25.86 $((CH_3)_3C)$; 29.06, 31.00 (CH₃CH₂CH₂); 45.40, 52.11 (CH₂N); 55.18 (CH₃O); 61.94 (C(5['])); 69.49 (C(3['])); 76.67 (C(2')); 82.89 (C(4')); 86.77 (C-Ph(Ph-OCH₃)₂); 90.52 (C(1')); 113.08-141.28, 158.32 (Ph); 144.43 (C(6)); 156.25 (C(2)); 158.55 (NCH); 171.94 (C(4)). ¹H NMR (CDCl₃) (**4b**'): -0.07 (s, 3H, CH₃); 0.04 (s, 3H, CH₃); 0.82 (s, 9H, tBu); 0.88–0.97 (m, 6H, CH₃CH₂); 1.26–1.40 (m, 4H, CH₃CH₂); 1.52–1.64 (m, 4H, CH₃CH₂CH₂); 2.62 (t, 1H, ${}^{3}J=7.3$ Hz, HOC(2')); 3.24–3.61 (2m, 6H, CH₂N, H₂C(5')); 3.79 (s, 6H, CH₃O); 4.12–4.17 (m, 2H, HC(2'), HC(4')); 4.35 (t, 1H, ${}^{3}J=5.5$ Hz, HC(3')); 5.83 (d, 1H, ${}^{3}J=7.5$ Hz, HC(5)); 6.03 (d, 1H, ${}^{3}J=3.3$ Hz, HC(1')); 6.82-7.42 (m, 13H, Ph); 8.05 (d, 1H, ³J=7.5 Hz, HC(6)); 8.84 (s, 1H, NCH). ¹³C NMR (CDCl₃) (**4b**'): -5.01, -4.76 ((CH₃)₂Si); 13.66, 13.96 (CH₃); 18.01 (C(CH₃)₃); 19.76, 20.05 (CH₃CH₂); 25.65 ((CH₃)₃C); 29.06, 30.98 (CH₃CH₂CH₂); 45.39, 52.10 (CH₂N); 55.20 (CH₃O); 62.07 (C(5')); 71.25 (C(3')); 75.98 (C(2')); 83.57 (C(4')); 86.74 (C-Ph(Ph-OCH₃)₂); 91.18 (C(1')); 113.19-141.29, 158.28 (Ph); 144.18 (C(6)); 156.75 (C(2)); 158.60 (NCH); 172.00 (C(4)). MS (FAB): 838 ([M+K]⁺, 2.0%); 800 ([M+H]⁺, 16.6%); 799 ($[M]^+$, 31.1%); 303 ($[C-Ph(Ph-OCH_3)_2]^+$, 100%).

2-N-((di-n-Butylamino)-methylene)-2'/3'-O-tert-butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-l-guanosine (4c/c'). **3c** (480 mg, 0.66 mmol) was treated as described as above. Purification by chromatography (toluene/EtOAc gradient from 50:50 to 20:80) afforded 4c (194 mg, 0.23 mmol, 35%) and 4c' (188 mg, 0.22 mmol, 34%) as a yellowish foam. $R_{\rm f}$ (CHCl₃/EtOAc 6:4): 0.25 (4c), 0.12 (4c'). ¹H NMR (CDCl₃) (4c): -0.13 (s, 3H, CH₃); 0.03 (s, 3H, CH₃); 0.85 (s, 9H, *t*Bu); 0.94–0.99 (m, 6H, CH₃CH₂); 1.29–1.39 (m, 4H, CH₃CH₂); 1.55–1.68 (m, 4H, CH₃CH₂CH₃CH₂CH₃CH₂); 2.75 (d, 1H, ${}^{3}J$ =3.9 Hz, HOC(3')); 3.26-3.50 (m, 6H, CH₂N, H₂C(5')); 3.79 (s, 6H, CH₃O); 4.19-4.25 (m, 1H, HC(4')); 4.28-4.32 (m, 1H, HC(3')); 4.66 (t, 1H, ${}^{3}J=5.4$ Hz, HC(2')); 6.00 (d, 1H, ${}^{3}J=5.7$ Hz, HC(1['])); 6.80–7.44 (m, 13H, Ph); 7.80 (s, 1H, HC(8)); 8.49 (br s, 1H, NH); 8.57 (s, 1H, NCH). ¹³C NMR (CDCl₃) (**4c**): -5.17, -4.99 ((CH₃)₂Si); 13.67, 13.77 (CH₃CH₂); 17.88 $(C(CH_3)_3);$ 19.73, 20.11 $(CH_3CH_2);$ 25.56 $((CH_3)_3C);$ 28.95, 30.98 (CH₃CH₂CH₂); 45.64, 52.20 (CH₂N); 55.24 (CH₃O); 63.64 (C(5')); 71.72 (C(3'); 77.20 (C(2')); 83.78 (C(4')); 86.69 (C(1')); 86.74 (C-Ph(PhOCH₃)₂); 120.42

1481

(C(5)); 113.27, 127.01–135.74, 157.62 (Ph); 144.42 (C(8)); 150.55 (C(4)); 156.84, 157.54 (C(6) or C(2)); 158.60 (NCH). ¹H NMR (CDCl₃) (4c'): -0.02 (s, 3H, CH₃); 0.07 (s, 3H, CH₃); 0.87 (s, 9H, tBu); 0.92–0.98 (m, 6H, CH₃CH₂); 1.27–1.39 (m, 4H, CH₃CH₂); 1.55–1.66 (m, 4H, CH₃CH₂CH₂); 3.22–3.50 (2m, 6H, CH₂N, H₂C(5')); 3.78 (s, 6H, CH₃O); 4.14 (m, 1H, HC(4')); 4.36-4.42 (m, 2H, HC(2'), HC(3')); 6.01 (d, 1H, ${}^{3}J=4.5$ Hz, HC(1')); 6.80-7.43 (m, 13H, Ph); 7.53 (s, 1H, HC(8)); 8.58 (s, 1H, NCH); 8.74 (br s, 1H, NH). ¹³C NMR (CDCl₃) (4c'): -4.85, -4.77 ((CH₃)₂Si); 13.60, 13.74 (CH₃CH₂); 17.98 (C(CH₃)₃); 19.68, 20.10 (CH₃CH₂); 25.68 ((CH₃)₃C); 28.90, 30.85 (CH₃CH₂CH₂); 45.69, 52.18 (CH₂N); 55.19 (CH₃O); 62.84 (C(5')); 71.93 (C(3'); 75.18 (C(2')); 83.89 (C(4')); 86.62 $(C-Ph(PhOCH_3)_2);$ 87.70 (C(1')); 120.54 (C(5)); 113.21, 126.95–135.73,157.64 (Ph); 144.24 (C(8)); 150.33 (C(4)); 156.94, 157.60 (C(6) or C(2)); 158.57 (NCH). MS (FAB): 877 ($[M+K]^+$, 5.6%); 839 ($[M+H]^+$, $([C-Ph(Ph-OCH_3)_2]^+, 100\%).$

2'-O-tert-Butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-1-uridine 3'-O-(2-cyanoethyl-N, N-diisopropyl)phosphoramidite (5a). Compound 4a (77 mg, 0.12 mmol) was dried overnight under high vacuum. THF (0.5 ml, freshly distilled) was added under Ar followed by 2,4,6-collidine (116 μ l, 0.87 mmol) and *N*-methylimidazole (5 μ l, 2-Cyanoethyl 0.06 mmol). diisopropylphosphoramidochloridite (65 µl, 0.29 mmol) was added dropwise over 5 min. After stirring for 1 h at room temperature, the mixture was diluted with EtOAc (35 ml), then extracted by NaHCO₃ solution and brine. After drying over Na₂SO₄ and evaporation, purification by chromatography (EtOAc/ hex/TEA 50:50:1) afforded 5a (87 mg, 0.10 mmol, 88%) as a white powder after solubilisation in benzene, filtration through a Millipore filter (0.45 μ m) and lyophilisation. $R_{\rm f}$ (EtOAc/hex 1:1): 0.47, 0.42. Mixture of diastereoisomers: ¹H NMR (CDCl₃): 0.08–0.15 (4s, 6H, Si(CH₃)₂); 0.93, 0.92 (2s, 9H, tBu); 1.02–1.18 (2m, 12H, (CH₃)₂CH); 2.41–2.67 $(2m, 2H, CH_2CN); 3.38-3.61 (2m, 4H, H_2C(5')),$ (CH₃)₂CH); 3.79–3.98 (m, 8H, CH₃O, CH₂O); 4.22–4.48 (3m, 3H, HC(4'), HC(2'), HC(3')); 5.27-5.33 (2d, 1H, ${}^{3}J=8.2$ Hz, HC(5)); 5.90–5.99 (2d, 1H, ${}^{3}J=4.8$ Hz, HC(1')); 6.83-7.43 (2m, 13H, Ph); 7.91-7.49 (2d, 1H, ${}^{3}J=8.4$ Hz, HC(6)); 8.04 (br s, 1H, NH). ${}^{31}P$ NMR (CDCl₃): 149.83, 149.34.

6-N-((di-n-Butylamino)-methylene)-2'-O-tert-butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-1-cytidine 3'-O-(2-cyanoethyl-N,N,-diisopropyl)phosphoramidite (5b). Compound 4b (117 mg, 0.15 mmol) was treated as described above. Purification by chromatography (EtOAc/ hex/TEA 50:50:1) afforded 5b (106 mg, 0.11 mmol, 73%) as a white powder after solubilisation in benzene, filtration through a Millipore filter (0.45 μ m) and lyophilisation. $R_{\rm f}$ (EtOAc/hex 1:1): 0.12, 0.22. Mixture of diastereoisomers: ¹H NMR (CDCl₃): 0.01–0.26 (4s, 6H, Si(CH₃)₂); 0.89–1.18 (2m, 27H, tBu, (CH₃)₂CH, CH₃CH₂); 1.26–1.38 (m, 4H, CH₃CH₂); 1.54–1.64 (m, 4H, CH₃CH₂CH₂); 2.35–2.63 $(2m, 2H, CH_2CN); 3.31-4.41 (m, 19H, CH_2N, H_2C(5')),$ (CH₃)₂CH, CH₃O, CH₂O, HC(4')), HC(3'), HC(2')); 5.69-5.73 (m, 1H, HC(5)); 5.87–6.01 (2s, 1H, HC(1')); 6.82–7.49 (m, 13H, Ph); 8.03–8.23 (2d, 1H, ³*J*=7.4 Hz, HC(6)); 8.86, 8.88 (2s, 1H, NCH). ³¹P NMR (CDCl₃): 149.31, 148.91.

2-N-((di-n-Butylamino)-methylene)-2'-O-tert-butyldimethylsilyl-5'-O-(4,4'-dimethoxytrityl)-l-guanosine 3'-O-(2-cyanoethyl-*N*,*N*-diisopropyl)phosphoramidite (5c). Compound 4c (115 mg, 0.14 mmol) was treated as described above. Purification by chromatography (EtOAc/ TEA 1%) afforded 5c (128 mg, 0.13 mmol, 91%) as a white powder after solubilization in benzene, filtration through a Millipore filter (0.45 μ m) and lyophilization. $R_{\rm f}$ (EtOAc): 0.36. Mixture of diastereoisomers: ¹H NMR (CDCl₃): -0.14-0.07 (4s, 6H, Si(CH₃)₂); 0.82, 0.83 (2s, 9H, *t*Bu); 0.89–1.03 (m, 18H, (CH₃)₂CH, CH₃CH₂); 1.15–1.42 (m, 4H, CH₃CH₂); 1.53–1.65 (m, 4H, CH₃CH₂CH₂); 2.18–2.61 $(2m, 2H, CH_2CN); 3.20-3.75 (2m, 8H, CH_2N, H_2C(5'),$ (CH₃)₂CH); 3.78-4.02 (m, 8H, CH₃O, CH₂O); 4.29-4.66 (3m, 3H, HC(4'), HC(3'), HC(2')); 5.99-6.06 (2d, 1H, ${}^{3}J=6.1$ Hz, HC(1')); 6.80–7.47 (m, 13H, Ph); 7.84, 7.89 (2s, 1H, HC(8)); 8.42 (br s, 1H, NH); 8.57, 8.59 (2s, 1H, NCH). ³¹P NMR (CDCl₃): 189.88, 188.51.

Synthesis of the anchoring 1-thymidine derivative

2',3',5'-tri-O-Benzoyl-5-methyl-l-uridine (7). 1-O-Acetyl-2,3,5-tri-O-benzoyl- β -l-ribofuranose (6) (1.50 g, 2.97 mmol) and thymine (1.13 g, 8.92 mmol) were coevaporated three times with anhydrous CH₃CN under Ar. Absolute CH₃CN (40 ml) and BSA (4.36 ml, 17.84 mmol) were added at room temperature. The mixture was stirred at 65°C until the base was dissolved. TMSOTf (0.81 ml, 4.46 mmol) was added and the mixture was stirred overnight under Ar at 65°C. CH₂Cl₂ (150 ml) was added and washed with sat. NaHCO₃ solution. After drying over Na_2SO_4 and evaporation, purification by chromatography (PE/EtOAc 5:5) afforded 7 (1.66 g, 2.91 mmol, 98%) as a white foam. R_f (PE/EtOAc 5:5): 0.55. ¹H NMR (CDCl₃): 1.60 (s, 3H, CH₃); 4.65 (dd, 1H, ${}^{2}J_{5'a,5'b}$ =11.8 Hz, ^{1.00} (s, 5H, CH₃), 4.05 (dd, 1H, $J_{5'a,5'b}$ = 11.0 Hz, ${}^{3}J_{5'a,4'}$ =3.5 Hz, HaC(5')); 4.67–4.71 (m, 1H, HC(4')); 4.88 (dd, 1H, ${}^{2}J_{5'b,5'a}$ =11.8 Hz, ${}^{3}J_{5'b,4'}$ =2.3 Hz, HbC(5')); 5.76 (t, 1H, ${}^{3}J$ =6.3, 3.1 Hz, HC(2')); 5.92 (dd, 1H, ${}^{3}J$ =6.0, 3.7 Hz, HC(3')); 6.43 (d, 1H, ${}^{3}J$ =6.3 Hz, HC(1')); 7.16 (s, 1H, HC(3')); 6.43 (d, 1H, ${}^{3}J$ =6.3 Hz, HC(1')); 7.16 (s, 1H, HC(6)); 7.33–8.15 (m, 15H, Ph); 8.95 (s, 1H, NH). ¹³C NMR (CDCl₃): 12.07 (CH₃); 63.92 (C(5')); 71.42 (C(3')); 73.35 (C(2')); 80.59 (C(4')); 86.91 (C(1')); 112.18 (C(5)); 128.34-133.76 (Ph). 134.81 (C(6)); 150.31 (C(2)); 163.31 (C(4)); 165.31, 165.39, 165.97 (PhCO). MS (FAB): 609 $([M+K]^+,$ 4.0%); 571 $([M+H]^+,$ 4.4%); 445 ([M-base])⁺, 10.4%); 105 ([PhCO]⁺; 100%).

5-Methyl-1-uridine (8). Compound **7** (1.64 g, 2.87 mmol) was dissolved in 0.1 M NaOMe/MeOH (60 ml). The mixture was stirred overnight at room temperature, then neutralised with a minimal amount of Dowex resin (H⁺ form). After filtration and evaporation, water (40 ml) was added and extracted with CH₂Cl₂ (10×2 ml). The water layer was evaporated to give **8** (720 mg, 2.79 mmol, 97%) as a pale yellow powder after lyophilisation. Rf (EtOAc/MeOH/H₂O 8:1:0.1): 0.34. Mp: 180–182°C. ¹H NMR (CD₃OD): 1.87 (s, 3H, CH₃); 3.74 (dd, 1H, ${}^{2}J_{5'a,5'b}=12.3$ Hz, ${}^{3}J_{5'a,4'}=3.1$ Hz, HaC(5')); 3.85 (dd, 1H, ${}^{2}J_{5'a,5'b}=12.3$ Hz, ${}^{3}J_{5'b,4'}=2.7$ Hz, HbC(5')); 3.97–4.01 (m, 1H, HC(4')); 4.14–4.20 (m, 2H, HC(2'), HC(3')); 5.89 (d, 1H, ${}^{3}J=4.5$ Hz, HC(1')); 7.84 (s, 1H, HC(6)). ¹³C NMR (CD₃OD): 12.39 (CH₃); 62.32 (C(5')); 71.30 (C(3')); 75.54 (C(2')); 86.32 (C(4')); 90.45 (C(1')); 111.46 (C(5));

138.43 (C(6)); 152.66 (C(2)); 166.40 (C(4)). MS (FAB): 297 ([M+K]⁺, 35.4%); 259 ([M+H]⁺, 31.8%); 133 ([M-base]⁺, 13.9%); 43 (100%).

3',5'-O-(1,1,3,3-Tetraisopropyldisiloxan-1,3-diyl)-5-methyl-**1-uridine** (9). Compound 8 (722 mg, 2.79 mmol) was coevaporated three times with anhydrous pyr under Ar and dissolved in pyr (40 ml). DMAP (341 mg, 2.79 mmol) was added and the mixture was stirred completely 1,3-Dichloro-1,1,3,3-tetraisopropyldisiloxane dissolved. (0.92 ml, 2.94 mmol) was added dropwise via syringe. The mixture was stirred overnight at room temperature under Ar. The solvents were evaporated, then NaHCO3solution was added and extracted with CH₂Cl₂ (150 ml). After drying over Na₂SO₄ and evaporation, purification by chromatography (PE/EtOAc 5:5) gave 9 (1.15 g, 2.31 mmol, 82%) as a white foam. $R_{\rm f}$ (PE/EtOAc 5:5): 0.56. ¹H NMR (CDCl₃): 1.03–1.10 (m, 28H, (CH₃)₂CH); 1.91 (s, 3H, CH₃); 3.25 (s, 1H, HO–C(2')); 3.98–4.04 (d"d", 1H, $^{2}J=13.0$ Hz, HaC(5')); 4.08 (dt 1H, $^{3}J=8.5$, 2.8 Hz, HC(4')); 4.16-4.22 (m, 2H, HbC(5'), HC(2')); 4.41 (dd, 1H, ${}^{3}J=8.5$, 5.2 Hz, HC(3')); 5.71 (s, 1H, HC(1')); 7.40 (s, 1H, HC(6)); 8.23 (s, 1H, NH). ¹³C NMR (CDCl₃): 12.56, 12.73, 12.99, 13.44 (CH₃, (CH₃)₂CH); 16.87, 16.97, 17.01, 17.08, 17.25, 17.37, 17.43 ((CH₃)₂CH); 60.52 (C(5')); 69.29 (C(3')); 75.02 (C(2')); 81.95 (C(4')); 91.15 (C(1')); 110.57 (C(5)); 135.82 (C(6)); 149.98 (C(2)); 163.72 (C(4)). MS (FAB): 539 $([M+K]^+, 64.0\%)$; 501 $([M+H]^+, 64.0\%)$; 501 ([M+100%); 375 ([M-base]⁺, 15.2%).

3',5'-O-(1,1,3,3-Tetraisopropyldisiloxan-1,3-diyl)-5-methyl-2'-O-(phenoxythiocarbonyl)-l-uridine (10). Compound 9 (1.14 g, 2.27 mmol) was coevaporated two times with anhydrous pyr under Ar, then dissolved in abs. CH₃CN (80 ml). DMAP (2.78 g, 22.73 mmol) was added at 0°C (ice bath). The mixture was stirred 15 min at 0°C then phenylcarbonochloridathioate (0.46 ml, 3.41 mmol) was added dropwise. The mixture was stirred overnight at room temperature then evaporated to dryness. EtOAc was added and extracted with water and NaHCO₃-solution. After drying over Na₂SO₄ and evaporation, purification by chromatography (PE/EtOAc 8:2 and 5:5) afforded 10 (1.21 g, 2.00 mmol, 88%) as a yellowish oil. Rf (PE/EtOAc 5:5): 0.81. ¹H NMR (CDCl₃): 1.04–1.11 (m, 28H, (CH₃)₂CH); 1.93 (s, 3H, CH₃); 4.01–4.26 (m, 3H, HC(4'), H₂C(5')); 4.61 (dd, 1H, ${}^{3}J=9.2, 5.0 \text{ Hz}, \text{HC}(3')$; 5.91 (s, 1H, HC(1')); 6.01 (d, 1H, ³*J*=5.1 Hz, HC(2')); 7.10–7.44 (m, 6H, Ph, HC(6)); 8.27 (s, 1H, NH). ¹³C NMR (CDCl₃): 12.58, 12.74, 12.86, 12.95, 13.43 (CH(CH₃)₂, CH₃); 16.92, 16.96, 17.03, 17.26, 17.37, 17.41 ((CH₃)₂CH); 59.54 (C(5')); 68.42 (C(3')); 82.09 (C(4')); 83.84 (C(2')); 88.77 (C(1')); 111.05 (C(5));121.77, 126.69, 129.56, 153.45 (Ph); 135.29 (C(6)); 149.53 (C(2)); 163.30 (C(4)); 193.85 (C(S)). MS (FAB): 511 ([M–OPh]⁺, 28.2%); 483 (100%).

3',5'-O-(1,1,3,3-Tetraisopropyldisiloxan-1,3-diyl)-l-thymidine (11). Compound 10 (906 mg, 1.50 mmol) was coevaporated three times with anhydrous toluene under Ar, dissolved in toluene (35 ml) and degassed with Ar for 30 min. In a second flask, AIBN (123 mg, 0.75 mmol) and Bu₃SnH (1.07 ml, 4.49 mmol) in absolute toluene (7 ml) were degassed with Ar for 30 min. The first flask was then heated to 80°C, the second solution was added dropwise via syringe. The mixture was heated to 90°C for 4 h. After cooling to room temperature, the mixture was evaporated, the residue dissolved in CH₂Cl₂ and extracted with NaHCO₃-solution. After drying over Na₂SO₄ and evaporation, purification by chromatography (PE/EtOAc 9:1 and 6:4) afforded **11** (600 mg, 1.23 mmol, 82%) as a white foam. $R_{\rm f}$ (PE/EtOAc 5:5): 0.66. ¹H NMR (CDCl₃): 1.02–1.13 (m, 28H, (CH₃)₂CH); 1.92 (s, 1H, CH₃); 2.55 (m, 1H, H_AC(2¹)); 2.49 (m, 1H, H_BC(2')); 3.75 (dt, 1H, ${}^{3}J$ =2.8, 8.0 Hz, HC(3')); 4.03 (dd, 1H, ${}^{2}J_{5'a,5'b}$ =13.1 Hz, ${}^{3}J_{5'a,4'}$ =3.0 Hz, HaC(5')); 4.11 (dd, 1H, ${}^{2}J_{5'b,5'a}$ =13.1 Hz, ${}^{3}J_{5'b,4'}$ =2.5 Hz, HbC(5')); 4.49 (dt, 1H, ${}^{3}J$ =9.1, 7.8 Hz, HC(4')); 6.08 (dd, 1H, ${}^{3}J=6.2$, 2.8 Hz, HC(1')); 7.42 (s, 1H, HC(6)); 8.56 (s, 11, y = 0.2, 2.0 MR (CDCl₃): 12.46, 12.77, 13.01, 13.48 (CH(CH₃)₂, CH₃); 16.76, 16.84, 16.97, 17.09, 17.27, 17.33, 17.41, 17.45 ((CH₃)₂CH); 39.78 (C(2')); 60.57 (C(5')); 67.57 (C(3')); 83.79 (C(4')); 84.96 (C(1')); 110.51(C(5)), 135.21 (C(6)); 149.98 (C(2)); 163.62 (C(4)). MS (FAB): 488 ([M]⁺, 0.3%); 81 (100%).

1-Thymidine (12). Compound 11 (584 mg, 1.20 mmol) was dissolved in THF (30 ml), then Bu₄NF (1 M in THF) (2.63 ml, 2.63 mmol) was added. The mixture was stirred 2 h at room temperature, then evaporated to dryness. Purification by chromatography (EtOAc/MeOH gradient from 100:0 to 90:5) gave **12** (217 mg, 0.90 mmol, 75%) as a white powder. R_f (EtOAc/MeOH 9:1): 0.43; mp: 179-181°C. $[\alpha]_D^{25} = -26.3 \pm 0.5$ (c=0.37, MeOH). ¹H NMR (CD₃OD): 1.88 (s, 3H, CH₃); 2.19-2.26 (m, 2H, H_AC(2')); 3.73 (dd, 1H, ${}^{2}J_{5'a,5'b}$ =11.9 Hz, ${}^{3}J_{5'a,4'}$ =3.7 Hz, HaC(5')); 3.90 (dd, 1H, ${}^{2}J_{5'b,5'a}$ =12.1 Hz, ${}^{3}J_{5'b,4'}$ =3.1 Hz, HbC(5')); 3.90 (dd, 1H, ${}^{3}J=6.7$, 3.3 Hz, HC(4⁷)); 4.39 (dt, 1H, ${}^{3}J=5.7$, 3.5 Hz, HC(3')); 6.28 (t, 1H, ${}^{3}J=6.8$ Hz, HC(1')); 7.81 (s, 1H, HC(6)). ¹³C NMR (CD₃OD): 12.44 (CH₃); 41.22 (C(2')); 62.84 (C(5')); 72.21 (C(3')); 86.25 (C(1')); 88.82 (C(4')); 111.51 (C(5)); 138.16 (C(6)); 152.37 (C(2)); 166.42 (C(4)). MS (FAB): 243 ([M+H]⁺, 19.3%); 242 ([M]⁺, 100%); 117 $([M-base]^+, 2.1\%).$

5'-O-(4,4'-Dimethoxytrityl)-l-thymidine (13). Compound 12 (149 mg, 0.62 mmol) was coevaporated three times with anhydrous pyr, dissolved in pyr (15 ml), then DMAP (19 mg, 0.15 mmol), DMTCl (coevaporated with anhydrous pyr, 250 mg, 0.74 mmol, dissolved in pyr (3 ml)) were added. The mixture was stirred for 4 h at room temperature, then MeOH (1 ml) was added and the mixture was evaporated. The residue was dissolved in EtOAc and washed with sat. NaHCO₃-solution. After drying over Na₂SO₄ and evaporation, purification by chromatography (EtOAc, 0.1% TEA) gave 13 (271 mg, 0.50 mmol, 81%) as a lightyellow foam. R_f (EtOAc): 0.58. ¹H NMR (CDCl₃): 1.47 (s, 3H, CH₃); 2.61–2.35 (m, 1H, H_AC(2')); 2.39–2;46 (m, 1H, $H_BC(2')$); 3.37 (dd, 1H, ${}^{2}J_{5'a,5'b}=10.5$ Hz, ${}^{3}J_{5'a,4'}=3.0$ Hz, HaC(5')); 3.47 (dd, 1H, ${}^{2}J_{5'b,5'a}=10.6$ Hz, ${}^{3}J_{5'b,4'}=3.2$ Hz, HbC(5')); 3.78 (s, 6H, OCH₃); 4.05–4.08 (m, 1H, HC(4')); 4.57 (ddd, 1H, ${}^{3}J$ =6.1, 3.0, 2.9 Hz, HC(3')); 6.42 $(t, 1H, {}^{3}J=5.8 \text{ Hz}, \text{HC}(1')); 6.82-7.41 \text{ (m, 13H, Ph)}; 7.59 \text{ (s, })$ 1H, HC(6)). ¹³C NMR (CDCl₃): 11.84 (CH₃); 44.99 (C(2')); 55.24 (OCH₃); 63.52 (C(5')); 72.53 (C(3')); 84.78 (C(4')); 86.25 (C-Ph(PhOCH₃)₂); 86.99 (C(1')); 111.29 (C(5)); 113.31-135.69, 158.76 (Ph); 144.36 (C(6)); 150.47 (C(2)); 163.81 (C(4)). MS (FAB): 583 $([M+K]^+, 6.2\%)$; 545 $([M+H]^+, 6.2\%)$; 545 ([M+H]^+, 6.2\%); 545 ([M+H]^+, 6.2\%); 545 1.4%); 271 ($[M-C(Ph(PhOCH_3)_2]^+$, 1.4%); 303 (100%).

5'-O-(4,4'-Dimethoxytrityl)-1-thymidine 3'-O-succinate (14). To a solution of dried 13 (270 mg, 0.50 mmol) in 1,2-dichloroethane (1 ml), DMAP (30 mg, 0.25 mmol), succinic anhydride (88 mg, 0.74 mmol) and TEA (69 µl, 0.50 mmol) were added. The reaction mixture was stirred at 50°C for 20 min and cooled, showing the formation of a single, more polar product on tlc. The solution was further diluted with CH₂Cl₂ (15 ml), washed with ice-cold aqueous solution of 10% citric acid (10×3 ml) and water (10×2 ml). After drying over Na₂SO₄ and evaporation, purification by chromatography (CH₂Cl₂/MeOH gradient from 98:2 to 92:8) furnished 14 (279 mg, 0.43 mmol, 87%) as a white foam. *R*_f (CH₂Cl₂/MeOH 9:1): 0.58. ¹H NMR (CDCl₃): 1.38 (s, 3H, CH₃); 2.37–2.59 (2 m, 2H, H₂C(2')); 2.60–2.66 (m, 4H, (CH₂)₂); 3.41 (dd, 1H, ${}^{2}J_{5'a,5'b}$ =10.5 Hz, ${}^{3}J_{5'a,4'}$ =2.4 Hz, HaC(5')); 3.48 (dd, 1H, ${}^{2}J_{5'b,5'a}$ =10.6 Hz, ${}^{3}J_{5'b,4'}$ =2.0 Hz, HbC(5')); 3.78 (s, 6H, OCH₃); 4.17–4.18 (m, 1H, HC(4'); 5.44 (d, 1H, ³J=5.3 Hz, HC(3')); 6.42 (dd, 1H, ${}^{3}J=9.0, 5.4 \text{ Hz}, \text{HC}(1')$; 6.81–7.40 (m, 13H, Ph); 7.61 (s, 1H, HC(6)). ¹³C NMR (CDCl₃): 11.55 (CH₃); 30.83, 31.74 (CH₂)₂; 37.94 (C(2')); 55.22 (OCH₃); 63.79 (C(5')); 75.09 (C(3')); 84.02 (C(4')); 84.40 (1'); 87.08 (*C*-Ph(PhOCH₃)₂); 111.47 (C(5)); 113.28-135.53, 158.72 (Ph); 144.26 (C(6)); 150.35 (C(2)); 163.61 (C(4)); 173.35, 177.85 (CO). MS (FAB): 683 ([M+K]⁺, 2.7%); 645 ([M+H]⁺, 1.3%); 303 (100%).

5'-O-(4,4'-Dimethoxytrityl)-1-thymidine 3'-O-(succinylamino-N-hexamethylene-N'-aminomethyl)polystyrene (15). Compound 14 (64 mg, 0.1 mmol) and DMAP (12.3 mg, 0.1 mmol) were weighed into a septum-sealed vial fitted with a small needle and kept over night under continuous vacuum. The vacuum was released with dry Ar, the needle removed, and anhydrous dichloromethane (2.5 ml) was added followed by HMDIC (16 µl, 0.1 mmol). The reaction was allowed to proceed at room temperature. After 15 min, the vial was opened under Ar and the polymer support $(500 \text{ mg}, 26.8 \,\mu\text{mol/g})$ and *N*-ethyl diisopropylamine $(17 \mu l, 0.1 \text{ mmol})$ were added. The vial was closed with a Teflon septum and gently shaken during 48 h. The polymer support was then filtered, washed with dichloromethane $(10\times3 \text{ ml})$ and Et₂O $(10\times3 \text{ ml})$. The polymer support was suspended in pyr/water (25 ml, 4:1 v/v) for 10 min at room temperature, washed with pyr (10×3 ml), and suspended in $Ac_2O/TEA/N$ -methylimidazole/ CH_2Cl_2 (16 ml, 1:1:0.3:6) for 30 min at room temperature. After filtration, the polymer support was washed with dichloromethane (10×2 ml) and Et_2O (10×2 ml) and dried over night under high vacuum. Loading: 5.00 mg 15 were suspended in 3% TCA/CH₂Cl₂ (5 ml). After 5 min, the absorbance of the supernatant was measured at 504 nm (1 cm path length). $A_{504}=0.996$, ϵ_{504} (trityl⁺)=72'678 M⁻¹ cm⁻¹=>13.7 µmol trityl/g resin.

Synthesis of d- and l-oligonucleotides

The synthesis of the oligonucleotides was carried out on an Applied Biosystems Inc. (ABI) DNA/RNA-Synthesizer, Model 392. Solid support: aminomethylpolystyrene (product no. 360865C, Lot: 9609225GB, capacity of load-ing: 26.8 μ mol/g as measured by a ninhydrin test according to Kaiser). d-Monomers (TOMTM, Xeragon, Zürich, Switzerland). Coupling reagent (Xeragon): 0.25 M 5-Benzylthio-1*H*-tetrazole/CH₃CN; other reagents (ABI):

3% TCA/CH₂Cl₂ (detritylation), Ac₂O/lutidine/THF (Cap A), *N*-methylimidazole/THF (Cap B), 0.02 M $I_2/H_2O/pyr/$ THF (oxidation), 40% aq. CH₃NH₂ (Fluka) for the deprotection of the bases and the cleavage from the solid support.

Some modifications to the standard protocol were applied in our oligonucleotide synthesis. For the d-nonamer: 77 mg (1.3 μ mol) **15** (D), use of 5-benzylthiotetrazole instead of tetrazole in the coupling step, coupling time: 300 s, capping step before and after the oxidation step, trityl off. For the l-nonamer: 54 mg (0.75 μ mol) **15** (L), use of 5-benzylthiotetrazole instead of tetrazole in the coupling step, 10 equivalents of l-monomers (0.03 M), coupling time: 600 s, capping step before and after the oxidation step, trityl off.

The oligonucleotide synthesised was deprotected with approximately 1.5 ml of 40% aq. CH₃NH₂ solution during 2 h at room temperature on the DNA/RNA Synthesizer (modified END RNA-Procedure from ABI), then the solution was transferred into two Eppendorf tubes. The solution was evaporated on a SpeedVac for approx. 3 h. The residue (oil) was dissolved in 270 µl NEt₃·3HF and 90 µl DMF, shortly vortexed and left at 55°C in a thermomixer for 1.5 h. To quench the reaction, 30 μ l H₂O were added and the resulting solution was distributed in three Eppendorf tubes (130 µl each) and mixed with 1 ml of n-butanol each. The mixtures were shortly vortexed and left for at least 30 min at -20° C. The fine precipitates were centrifuged during 10 min at 14 000 U/min and at room temperature. The supernatant was removed and the combined pellets were dissolved in a total of 600 µl of buffer A (20 mM Na/ K-phosphate buffer, pH 7.0, CIBA). OD₂₆₀ values of the crude oligonucleotides: 35/0.6 ml (d-nonamer), 42/0.6 ml (1-nonamer).

HPLC purification: strong anion exchange (SAX)

Column: 125×8 mm Nucleogen[®] DEAE 500-7 (Macherey-Nagel). Eluent mixture: A: 20 mM Na/K-phosphate buffer, pH 7.0; B: 0.6 M NaCl in buffer A. Detection: 260 nm (analytical); 290 nm (preparative). Flow rate: 2 ml/min. Gradient: 0–5 min 0–10% B, 5–8 min 10–25% B, 8–20 min 25–30% B. The main peak eluted between 25 and 30% B. Retention time: ~19.5 min.

Desalting

Column: 250×8 mm Eurospher[®] 100/5 RP₁₈ (Macherey–Nagel). Eluent: A: H₂O (nanopure), B: CH₃CN/H₂O (nanopure) 3:7; injector loop volume: 2 ml; flow rate: 3 ml/min; detection: 260 nm.

For complete desalting, an anion exchange fraction was loaded in approximately six 1.5-ml portions onto the column (2 ml/min A). After all RNA had been adsorbed, the excess salts were washed off the column with water (up to 6 ml/min). RNA counterions (Na⁺/K⁺) were exchanged by injecting 1 ml of 0.25 M NH₄OAc (flow rate 2 ml/min), excess ammonium salt was washed off with water (5 ml/min) and desalted RNA (NH₄⁺ form) was eluted by a step gradient to 100% B (3 ml/min). The collected RNA fraction was distributed over three Eppendorf tubes and evaporated on a SpeedVac until a volume of approximately 100 µl each

Figure 5. MALDI ToF MS. Theoretical mass of the oligoacid $+H^+$: 2805 Da (precision ± 10 Da): (a) d-nonamer; (b) 1-nonamer.

was reached (do not evaporate to dryness!). The tubes were combined into one Eppendorf tube and the stock solution was stored in the deep freezer (-20° C). OD₂₆₀ values of the stock solutions: 4/0.3 ml (d-nonamer); 6/0.4 ml (l-nonamer).

Analysis: reversed-phase HPLC and MALDI ToF MS

Column: 250 mm×8 mm Eurospher[®] 100/5 (Macherey-Nagel). Eluent mixture: A: 0.1 M NH₄OAc, B: 30% CH₃CN in buffer A. Detection: 260 nm. Gradient: 0-20 min: 0-20% B, 20-25 min: 20% B. The RP-Chromatograms are depicted in Fig. 4a (d-nonamer) and Fig. 4b (l-nonamer), the MALDI ToF mass spectra in Fig. 5.

Acknowledgements

This work was supported by a 'CHiral2' grant from the Swiss National Science Foundation and by the Novartis Foundation, Basel.

References

1. Wallach, O. J. Liebigs Ann. Chem. 1895, 286, 90-143.

- 2. Brock, C. P.; Schweizer, W. B.; Dunitz, J. D. J. Am. Chem. Soc. **1991**, *113*, 9811–9820.
- 3. Doi, M.; Inoue, M.; Tomoo, K.; Ishida, T.; Ueda, Y.; Akagi, M.; Urata, H. *J. Am. Chem. Soc.* **1993**, *115*, 10432–10433.
- 4. Wang, A. H.-J.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.;

Van Boom, J. H.; Van Der Marel, G.; Rich, A. *Nature* **1979**, *282*, 680–686.

- 5. Mackay, A. L. Nature 1989, 342, 133.
- 6. Moffat, A. S. Science 1992, 256, 309-310.
- 7. Petsko, G. A. Science 1992, 256, 1403-1404.
- 8. Cruse, W. B.; Saludjian, P.; Biala, E.; Strazewski, P.; Prangé, T.;
- Kennard, O. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 4160-4164.
- Moyroud, E.; Strazewski, P. *Tetrahedron* **1999**, *55*, 1277–1284.
 McBride, L. J.; Caruthers, M. H. *Tetrahedron Lett.* **1983**, *24*, 2953–2956.

11. McBride, J. L.; Kierzek, R.; Beaucage, S. L.; Caruthers, M. H. J. Am. Chem. Soc. **1986**, 108, 2040–2048.

- 12. Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234–1255.
- Vorbrüggen, H.; Höfle, G. *Chem. Ber.* **1981**, *114*, 1256–1268.
 Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. **1983**, *105*, 4059–4065.
- 15. Kumar, P.; Ghosh, N. N.; Sadana, K. L.; Garg, B. S.; Gupta, K. C. *Nucleosides & Nucleotides* **1993**, *12*, 565–584.
- 16. Ashley, G. W. J. Am. Chem. Soc. 1992, 114, 9731-9736.
- 17. Urata, H.; Ogura, E.; Shinohara, K.; Ueda, Y.; Akagi, M. *Nucleic Acids Res.* **1992**, *20*, 3325–3332.
- 18. Klussmann, S.; Nolte, A.; Bald, R.; Erdmann, V. A.; Fürste, J. P. *Nature Biotechnol.* **1996**, *14*, 1112–1115.
- 19. Nolte, A.; Klussmann, S.; Bald, R.; Erdmann, V. A.; Fürste, J. P. *Nature Biotechnol.* **1996**, *14*, 1116–1119.
- 20. Kanyo, J. E.; Duhamel, J.; Lu, P. *Nucleic Acids Res.* **1996**, *24*, 4015–4022.
- 21. Reif, B.; Wittmann, V.; Schwalbe, H.; Griesinger, C.; Wörner, K.; Jahn-Hofmann, K.; Engels, J. W.; Bermel, W. *Helv. Chim. Acta* **1997**, *80*, 1952–1971.

1484